This paper explores the innovative application prospects of triethylenediamine (TEDA) in 3D printing materials. By analyzing the chemical properties of TEDA and its mechanism of action in 3D printing materials, the application of TEDA in thermoplastics, photosensitive resins and composite materials is explained. The article introduces the preparation process, performance optimization and practical application cases of TEDA modified materials in detail, and looks forward to the future development trend of TEDA in the field of 3D printing. Research shows that the introduction of TEDA has significantly improved the performance of 3D printing materials and opened up new possibilities for the development of 3D printing technology. <\/p>\n
Keywords<\/strong> Triethylenediamine; 3D printing; material modification; innovative application; technological leap<\/p>\n
With the rapid development of 3D printing technology, the demand for high-performance printing materials is growing. As a multifunctional chemical additive, triethylenediamine (TEDA) has shown great application potential in the field of 3D printing materials. This article aims to explore the innovative application of TEDA in 3D printing materials, and to make technological leap from concept to reality, providing new ideas and directions for the development of 3D printing technology. <\/p>\n
TEDA is an organic compound with a unique molecular structure. It contains three nitrogen atoms in its molecules to form a stable ring structure. This special structure imparts excellent chemical stability and reactivity to TEDA, making it have wide application prospects in the field of material modification. In 3D printing materials, TEDA can not only act as a crosslinking agent and catalyst, but also play a role in toughening and enhancing, significantly improving the overall performance of the material. <\/p>\n
This article will start from the chemical characteristics of TEDA and its mechanism of action in 3D printing materials, explore the application of TEDA in different types of 3D printing materials in detail, analyze the preparation process and performance optimization of TEDA modified materials, and demonstrate its innovative application prospects through practical application cases. Later, the article will look forward to the future development trend of TEDA in the field of 3D printing and provide reference for related research and applications. <\/p>\n
Triethylenediamine (TEDA) is an organic compound with a unique molecular structure, and its chemical formula is C6H12N2. TEDA molecules contain three nitrogen atoms to form a stable ring structure, which imparts excellent chemical stability and reactivity to TEDA. TEDA has a smaller molecular weight, about 112.17 g\/mol, which allows it to penetrate easily into the polymer matrix and exert its unique modification effect. <\/p>\n
In 3D printing materials, TEDA mainly plays a role through the following mechanisms: First, TEDA canAs a crosslinking agent, it promotes the crosslinking reaction between polymer molecular chains, thereby improving the mechanical strength and thermal stability of the material. Second, TEDA’s alkaline properties enable it to act as a catalyst to accelerate certain polymerization or curing processes, which is particularly important for photocuring 3D printing materials. In addition, TEDA can react with certain functional groups in the polymer matrix to form stable chemical bonds, thereby improving the interfacial compatibility and overall performance of the material. <\/p>\n
These mechanisms of action of TEDA give it unique advantages in 3D printing material modification. For example, in thermoplastics, the addition of TEDA can significantly improve the melt strength and crystallinity of the material, thereby improving interlayer bonding and dimensional stability of the article during printing. In photosensitive resins, TEDA can be used as an additive to the photoinitiator to improve the photocuring efficiency and also improve the mechanical properties of the cured material. For composite materials, TEDA can enhance the interface bonding force between the filler and the matrix and improve the overall performance of the composite material. <\/p>\n
The application of TEDA in 3D printing materials is mainly reflected in three aspects: thermoplastics, photosensitive resins and composite materials. In thermoplastics, the addition of TEDA can significantly improve the processing properties of the material and the mechanical properties of the final product. For example, adding an appropriate amount of TEDA to a polylactic acid (PLA) material can improve the melt strength and crystallinity of the material, thereby improving interlayer bonding and dimensional stability of the product during printing. Table 1 shows the main performance parameters of TEDA modified PLA materials. <\/p>\n
Table 1 Performance parameters of TEDA modified PLA materials<\/p>\n\n\n\n\n\n\n\n
Performance metrics<\/th>\n | Unmodified PLA<\/th>\n | TEDA modified PLA<\/th>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tension Strength (MPa)<\/td>\n | 60<\/td>\n | 75<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Elongation of Break (%)<\/td>\n | 5<\/td>\n | 8<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thermal deformation temperature (\u2103)<\/td>\n | 55<\/td>\n | 65<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Melt Flow Index (g\/10min)<\/td>\n | 8<\/td>\n | 6<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n In terms of application in photosensitive resins, TEDA is mainly used as an additive to photoinitiators to improve photocuring efficiency. For example, adding TEDA to an acrylate photosensitive resin can significantly shorten the curing time and improve the mechanical properties of the cured material. Table 2 compares the light before and after adding TEDAChanges in properties of sensitive resins. <\/p>\n Table 2 Effect of TEDA on the properties of photosensitive resins<\/p>\n\n\n\n\n\n\n\n
|