{"id":55544,"date":"2025-03-06T18:19:10","date_gmt":"2025-03-06T10:19:10","guid":{"rendered":"http:\/\/www.newtopchem.com\/archives\/55544"},"modified":"2025-03-06T18:19:10","modified_gmt":"2025-03-06T10:19:10","slug":"application-of-nn-dimethylbenzylamine-bdma-in-petrochemical-pipeline-insulation-an-effective-way-to-reduce-energy-loss","status":"publish","type":"post","link":"http:\/\/www.newtopchem.com\/archives\/55544","title":{"rendered":"Application of N,N-dimethylbenzylamine BDMA in petrochemical pipeline insulation: an effective way to reduce energy loss","gt_translate_keys":[{"key":"rendered","format":"text"}]},"content":{"rendered":"
In the petrochemical industry, pipelines are an important facility for transporting various fluid media. However, due to the presence of temperature differences inside and outside the pipeline, energy loss is inevitable. In order to reduce energy losses and improve energy utilization efficiency, pipeline insulation technology is particularly important. N,N-dimethylbenzylamine (BDMA) has been widely used in petrochemical pipeline insulation in recent years. This article will introduce the chemical properties, product parameters and their application in pipeline insulation in detail, and explore its effective ways to reduce energy losses. <\/p>\n
N,N-dimethylbenzylamine (BDMA) is an organic compound with the chemical formula C9H13N. Its molecular structure contains benzene ring and two methyl substituted amino groups, which have high thermal stability and chemical stability. BDMA is a colorless or light yellow liquid at room temperature, with low volatility and can effectively prevent the volatility and leakage of media in the pipeline. <\/p>\n
parameter name<\/th>\n | Value\/Description<\/th>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chemical formula<\/td>\n | C9H13N<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Molecular Weight<\/td>\n | 135.21 g\/mol<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Appearance<\/td>\n | Colorless or light yellow liquid<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Boiling point<\/td>\n | 185-190\u00b0C<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Density<\/td>\n | 0.94 g\/cm\u00b3<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Flashpoint<\/td>\n | 65\u00b0C<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Solution<\/td>\n | Easy soluble in organic solvents, slightly soluble in water<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thermal Stability<\/td>\n | High<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chemical Stability<\/td>\n | High<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n3. The importance of thermal insulation in petrochemical pipelines<\/h2>\n |
Project name<\/th>\n | Value\/Description<\/th>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pipe length<\/td>\n | 500 meters<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||
Pipe diameter<\/td>\n | 200mm<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||
Medium Temperature<\/td>\n | 150\u00b0C<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||
Ambient temperature<\/td>\n | 25\u00b0C<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||
Insulation layer thickness<\/td>\n | 50mm<\/td>\n<\/tr>\n | ||||||||||||||||||||||||||||||||||||||||||||||||||
Energy loss reduction rate<\/td>\n | 30%<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n By using BDMA as insulation material, the energy loss of the project was reduced by 30%, significantly improving energy utilization efficiency and reducing operating costs. <\/p>\n 5. Comparison between BDMA and other insulation materials<\/h2>\n |
Insulation Material<\/th>\n | Thermal conductivity (W\/m\u00b7K)<\/th>\n | Thermal Stability<\/th>\n | Chemical Stability<\/th>\n | Construction Difficulty<\/th>\n<\/tr>\n | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BDMA<\/td>\n | 0.03<\/td>\n | High<\/td>\n | High<\/td>\n | Low<\/td>\n<\/tr>\n | |||||||||||||||||||||||||
Glass Wool<\/td>\n | 0.04<\/td>\n | in<\/td>\n | in<\/td>\n | in<\/td>\n<\/tr>\n | |||||||||||||||||||||||||
Polyurethane foam<\/td>\n | 0.02<\/td>\n | High<\/td>\n | in<\/td>\n | High<\/td>\n<\/tr>\n | |||||||||||||||||||||||||
Aluminum silicate fiber<\/td>\n | 0.05<\/td>\n | High<\/td>\n | High<\/td>\n | in<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n It can be seen from the table that BDMA is better than other insulation materials in terms of thermal conductivity, thermal stability and chemical stability, and is less difficult to construct. <\/p>\n 5.2 Economic Analysis<\/h3>\n
|